116k views
1 vote
Can you help me simplify these double radicals?

1.
\sqrt{6+2 √(5) }
2.
\sqrt{6+2 √(8) }
3.
\sqrt{10+2 √(21) }
4.
\sqrt{7-2 √(10) }
5.
\sqrt{10-2 √(21) }
6.
\sqrt{6-√(20) }
7.
\sqrt{7-√(48) }
8.
\sqrt{8+4√(3) }
9.
\sqrt{12-6√(3) }
10.
\sqrt{19+8√(3) }

User JojOatXGME
by
5.0k points

1 Answer

2 votes
You know that
.. (a +b)^2 = a^2 +b^2 +2ab
If these are square roots, then you have
.. (√a +√b)^2 = a +b +2√(ab)
.. (√a -√b)^2 = a +b -2√(ab)

In each case, you can put the inner radical in the form 2√something, then look for two factors of "something" that add to the other constant.
The result is then √factor1 ±√factor2, with the sign matching that under the original radical.

1. 1 +√5
2. 2 +√2
3. √3 +√7
4. √5 -√2 . . . . . . . . Technically, √(x^2) = |x|. By expressing the result as a positive number (smaller subtracted from larger), we don't have to worry about absolute value.

5. See 3 and 4. √7 -√3
6. √20 = 2√5. See 1 and 4.
.. √5 -1
7. 2 -√3
8. 4√3 = 2√12 = 2√(6*2)
.. √6 +√2
9. 6√3 = 2√(9*3)
.. 3 -√3
10. 8√3 = 2√(16*3)
.. 4 +√3
User Jenry
by
5.4k points