12.6k views
0 votes
To the nearest tenth, find the perimeter of ∆ABC with vertices A(-1,4), B(-2,1) and C(2,1). Show your work

User Nalan
by
8.1k points

2 Answers

1 vote

AB= √((-2-(-1))^2+(1-4)^2)= √(1+9)= √(10) \approx 3.2\\\\ BC= √((2-(-2))^2+(1-1)^2)= √(16)=4\\\\ AC= √((2-(-1))^2+(1-4)^2)= √(9+9)= √(18) \approx 4.2 \\\\ P_(ABC)=AB+BC+AC=3.2+4+4.2=11.4

The perimeter of ∆ABC = 11.4 units
User KimHafr
by
8.4k points
3 votes

ANSWER

The perimeter is 11.4 units


Step-by-step explanation


Perimeter is the distance around the figure.

We use the distance formula,


d=√((x_2-x_1)^2+(y_2-y_1)^2)


to determine the length of all the sides and add them.




|AB|=√((-2--1)^2+(1-4)^2)



|AB|=√((-1)^2+(-3)^2)



|AB|=√(1+9)



|AB|=√(10) \approx 3.162



|AC|=√((2--1)^2+(1-4)^2)



|AC|=√((2+1)^2+(1-4)^2)



|AC|=√((3)^2+(-3)^2)



|AC|=√(9+9)



|AC|=√(18) \approx 4.24



|BC|=√((2--2)^2+(1-1)^2)



|BC|=√((2+2)^2+(1-1)^2)



|BC|=√((4)^2+(0)^2)



|BC|=√(14)=4


Therefore perimeter=
|AB|+|BC|+|AC|


=
4.00+3.16+4.24


=
11.40 units

















To the nearest tenth, find the perimeter of ∆ABC with vertices A(-1,4), B(-2,1) and-example-1
User Mustahsan
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories