96.0k views
5 votes
Describe the relationship that must exist between a, b, and c in the equation ax^2+bx+c=0 in order for the equation to have exactly one solution

User Pmandell
by
7.9k points

1 Answer

5 votes
The equation
ax^2+bx+c=0 has solutions given by
x=(-b \pm √(b^2-4ac))/(2a). This means take the numbers a, b and c then plug them into that formula on your calculator and bam, answers.

The
b^2-4ac bit is called the discriminant and it tells you what kind of solutions occur,
-if
b^2-4ac \ \textgreater \ 0 then the equation has two different solutions
-if
b^2-4ac=0 then the equation has exactly one solution
-if
b^2-4ac\ \textless \ 0 then the equation has no (real) solutions.

So you are interested in exactly one solution which happens if
b^2-4ac=0 or equivalently
b^2=4ac.
User Kenny Thompson
by
8.0k points

No related questions found