186k views
4 votes
Which Expression Is Equivalent To The Expression Shown?

Which Expression Is Equivalent To The Expression Shown?-example-1
User TamRock
by
6.5k points

2 Answers

4 votes
Lol. I hate Iready. but it think its the bottom left.
because with numbers that have negative exponents, you're suppose to put them over one to get it positive.
ex. 3^-4= 1/3^4
vice versa with the negative sign
User JonnyG
by
6.2k points
5 votes

Answer:

The expression equivalent to
3^7*3^(-4) is
3^7*(1)/(3^4)

Explanation:

To answer this question, we notice that we have two factors multiplying each other. On one hand we have 3⁷, and on the other hand we have 3⁻⁴.

As the two factors are powers of the number 3, we have the following identities:


3^7*3^(-4)=3^(7-4)=3^3=27

and


27\\eq3^(-28)=4.37*10^(-14)

which discard that expression. We also know that if we multiply two factors with the same sign, we would get a positive number, so this discards the expression 3⁷x (-3⁴), as this resulting number will be negative (and 9 is positive).

Finally, we can write the following identity


3^7*(1)/(3^(-4)) =3^7*(3^(-4))^(-1)=3^7*3^4=3^(7+4)=3^11=177147\\eq27

Therefore the correct answer is
3^7*(1)/(3^4)

User Apar Adhikari
by
6.2k points