Answer:
1) Convert it to the same base and make a table with two columns for x, and y values.
2) The greater the base the lower the curve. Check the picture below.
Explanation:
1. Remember the rule in order to convert it to the same base two other logarithms:
![log_(a)b=(log_(c)a)/(log_(c) b)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k4m9h3012at93q2856alsmbsuyqbmflt5p.png)
Example
![log_(5) 20 \\ log_(2) 4\\ \\(log_(10)20)/(log_(10)4) =(log2+log10)/(log2+log2) = 2,16](https://img.qammunity.org/2019/formulas/mathematics/high-school/iovx64afvkkc3zn78jr8vb72elx6go1l41.png)
2. When we make the base bigger and bigger the curve will get closer and closer to the y-axis, such as those logarithmic functions.
Algebraically this is why
![y=log_(2)3=1.58](https://img.qammunity.org/2019/formulas/mathematics/high-school/gjw1gmer7soli83xxlc612en812je6nax7.png)
![y=log_(10)3=0.477](https://img.qammunity.org/2019/formulas/mathematics/high-school/bcrwtz76pew9ef15nwhcb2hv6h4ki0gq15.png)
And so on...
3) Make a table for x values and plug the values to return the y values. Do not forget, x > 0
For
![y=log_(2)x](https://img.qammunity.org/2019/formulas/mathematics/high-school/qm0mrnhov8yf8omixs0grp2lsv8frlht5f.png)
x y
1 0
2 1
4 2
![y=log_(10)x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/i2h38na5b4etj2bxtw8ukosk54gczx6ttl.png)
x y
1 0
2 0,3
4 0,6
Trace the hyperbole and check for yourself!