154k views
0 votes
Find the length of a line segment ---

CD with endpoint C at (-3, 1) ad endpoint D at (5, 6). round your answer to the nearest tenth, if necessary.
A. 9.4
B. 5.4
C. 3.6 ]
D. 11.7

Find the midpoint of a segment FG with point F at (-6, 4) and midpoint G at (8, -2)
A. (-7, 3)
B. (7, -3)
C. (1, 1)
D. (-1, -1)

Find the slope of a line that passes through (-2, -3) and (1, 1)
A. 1/1
B. 1
C. 2
D. 4/3

User Palesz
by
8.9k points

1 Answer

2 votes

\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &C&(~ -3 &,& 1~) % (c,d) &D&(~ 5 &,& 6~) \end{array}~ % distance value d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ CD=√([5-(-3)]^2+[6-1]^2)\implies CD=√((5+3)^2+(6-1)^2) \\\\\\ CD=√(8^2+5^2)\implies CD=√(64+25)\implies CD=√(89)




\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &F&(~ -6 &,& 4~) % (c,d) &G&(~ 8 &,& -2~) \end{array}\qquad % coordinates of midpoint \left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{8-6}{2}~~,~~\cfrac{-2+4}{2} \right)\implies \left( \cfrac{2}{2}~~,~~\cfrac{2}{2} \right)\implies (1,1)




\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ -2 &,& -3~) % (c,d) &&(~ 1 &,& 1~) \end{array} \\\\\\ % slope = m slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-(-3)}{1-(-2)}\implies \cfrac{1+3}{1+2}\implies \cfrac{4}{3}
User James Conigliaro
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories