18.6k views
2 votes
For each of 2 ≤ n ≤ 5, compute c(n, 0) + c(n, 2) + ⋅⋅⋅ + c(n, 2k), where 2k is largest even integer ≤ n, and compute c(n, 1) + c(n, 3) + ⋅⋅⋅ + c(n, 2k + 1), where 2k + 1 is the largest odd integer ≤ n.

User VzR
by
7.4k points

1 Answer

5 votes
Denote
C(n,m)=\dbinom nm. Then


n=2\implies\displaystyle\binom20+\binom22=1+1=2

n=3\implies\displaystyle\binom30+\binom32=1+3=4

n=4\implies\displaystyle\binom40+\binom42+\binom44=1+6+1=8

n=5\implies\displaystyle\binom50+\binom52+\binom54=1+10+5=16

In general, it would appear that


\displaystyle\sum_(k=0)^(2\lfloor\frac n2\rfloor)\binom n{2k}=2^(n-1)

On the other hand,


n=2\implies\displaystyle\binom21=2

n=3\implies\displaystyle\binom31+\binom33=3+1=4

n=4\implies\displaystyle\binom41+\binom43=4+4=8

n=5\implies\displaystyle\binom51+\binom53+\binom55=5+10+1=16

so that in general, we also get


\displaystyle\sum_(k=0)^{2\lfloor\frac{n-1}2\rfloor+1}\binom n{2k+1}=2^(n-1)
User Zyzof
by
8.7k points

No related questions found