198k views
4 votes
How is this solved using trig identities (sum/difference)?

How is this solved using trig identities (sum/difference)?-example-1

1 Answer

5 votes
FIRST PART
We need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative

Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached

Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13

cos α = side adjacent to the angle / hypotenuse
cos α = -5/13

Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°


cos \beta = -(1)/(2) √(3)


tan \beta= (1)/(3) √(3)

SECOND PART
Solve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β

sin( \alpha + \beta )=(- (12)/(13) )( -(1)/(2) √(3))+( -(5)/(13) )( -(1)/(2) )

sin( \alpha + \beta )=((12)/(26)√(3))+( (5)/(26) )

sin( \alpha + \beta )=((5+12√(3))/(26))

Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β

cos( \alpha + \beta )=(- (5)/(13) )( -(1)/(2) √(3))+( -(12)/(13) )( -(1)/(2) )

cos( \alpha + \beta )=((5)/(26) √(3))+( (12)/(26) )

cos( \alpha + \beta )=((5√(3)+12)/(26) )

Find tan (α - β)

tan( \alpha - \beta )= ( tan \alpha-tan \beta )/(1+tan \alpha tan \beta )

tan( \alpha - \beta )= ( (5)/(12) - (1)/(2) √(3) )/(1+((5)/(12)) ( (1)/(2) √(3)))

Simplify the denominator

tan( \alpha - \beta )= ( (5)/(12) - (1)/(2) √(3) )/(1+((5√(3))/(24)))

tan( \alpha - \beta )= ( (5)/(12) - (1)/(2) √(3) )/( (24+5√(3))/(24) )

Simplify the numerator

tan( \alpha - \beta )= ( (5)/(12) - (6)/(12) √(3) )/( (24+5√(3))/(24) )

tan( \alpha - \beta )= ( (5-6√(3))/(12) )/( (24+5√(3))/(24) )

Simplify the fraction

tan( \alpha - \beta )= ((5-6√(3))/(12) })({ (24)/(24+5√(3)))

tan( \alpha - \beta )= (10-12√(3) )/( 24+5√(3))
How is this solved using trig identities (sum/difference)?-example-1
User Arberb
by
5.8k points