103k views
1 vote
Please help with these two questions I'm very confused!

1) If cos θ = 0.54, find sin(θ-pi/2).
2) If cot x = -0.18, find tan(x-pi/2).

User Vetsin
by
8.4k points

1 Answer

6 votes
1)


\bf \textit{Cofunction Identities} \\\\ sin\left((\pi)/(2)-\theta\right)=cos(\theta) \qquad cos\left((\pi)/(2)-\theta\right)=sin(\theta) \\\\\\ \textit{also recall that }sin(-\theta )=-sin(\theta )\\\\ -------------------------------


\bf sin\left( \theta -(\pi )/(2) \right)\implies sin\left[-\left( (\pi )/(2)-\theta \right) \right]\implies -sin\left( \theta -(\pi )/(2) \right)\implies -cos(\theta ) \\\\\\ \textit{and since }cos(\theta )=0.54\qquad then\qquad -cos(\theta )\implies -0.54



2)


\bf \textit{Cofunction Identities} \\\\ sin\left((\pi)/(2)-\theta\right)=cos(\theta) \qquad cos\left((\pi)/(2)-\theta\right)=sin(\theta) \\\\\\ tan\left((\pi)/(2)-\theta\right)=cot(\theta)\qquad cot\left((\pi)/(2)-\theta\right)=tan(\theta) \\\\\\ \textit{also recall }sin(-\theta )=-sin(\theta )\qquad cos(-\theta )=cos(\theta )\\\\ -------------------------------


\bf tan\left( x-(\pi )/(2) \right)\implies \cfrac{sin\left( x-(\pi )/(2) \right)}{cos\left( x-(\pi )/(2) \right)}\implies \cfrac{sin\left[ -\left( (\pi )/(2)-x \right) \right]}{cos\left[ -\left( (\pi )/(2)-x \right) \right]} \\\\\\ \cfrac{-sin\left( (\pi )/(2)-x \right)}{cos\left( (\pi )/(2)-x \right)}\implies -tan\left( (\pi )/(2)-x \right)\implies -cot(x) \\\\\\ \textit{and since }cot(x)=-0.18\qquad then\qquad -cot(x)\implies 0.18
User Senschen
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories