72.6k views
2 votes
Derivative of 2ln(secx)

1 Answer

5 votes

Answer:


\displaystyle (dy)/(dx) = 2 \tan (x)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = 2 \ln (\sec x)

Step 2: Differentiate

  1. Logarithmic Differentiation [Chain Rule, Multiplied Constant]:
    \displaystyle (dy)/(dx) = 2 \bigg( (1)/(\sec x) \bigg) \cdot (d)/(dx)[\sec x]
  2. Trigonometric Differentiation:
    \displaystyle (dy)/(dx) = 2 \bigg( (1)/(\sec x) \bigg) \cdot \sec x \tan x
  3. Simplify:
    \displaystyle (dy)/(dx) = 2 \tan (x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Haofly
by
5.7k points