188k views
2 votes
Can I get help solving this graph please?

Left graph is m(x) and right is n(x), Both functions have a sharp point at 50. h(x) = n(m(x)), and it requires a point x where h'(x) = 1.44

Can I get help solving this graph please? Left graph is m(x) and right is n(x), Both-example-1
User Beyonder
by
5.6k points

1 Answer

2 votes
see the attached figure with the letters

1) find m(x) in the interval A,B
A (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100

2) find m(x) in the interval B,C
B(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20

3) find n(x) in the interval A,B
A (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x

4) find n(x) in the interval B,C
B(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30

5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find h'(x)
h'(x)=-36/25=-1.44

6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72

for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72

h'(x) = 1.44 ------------ > not exist
Can I get help solving this graph please? Left graph is m(x) and right is n(x), Both-example-1
User Tmyklebu
by
5.5k points