Important formula we will use.
First formula
2 cos α sin β = sin (α + β) - sin (α - β)
Second formula
∫ sin x dx = - cos x + c
We should change the trigonometry expression from multiplication into addition. Use the first formula above∫ 8 sin (2x) cos (3x) dx
= ∫ 4 ( 2 sin (2x) cos (3x) dx)
= 4 ∫ 2 cos (3x) sin (2x) dx
= 4 ∫ sin (3x + 2x) - sin (3x - 2x) dx
= 4 ∫ sin 5x - sin x dx
After changing into addition, solve the integration. Use the second formula.= 4 ∫ sin 5x - sin x dx


This is the answer.