141k views
1 vote
What is the perimeter of quadrilateral ABCD?

What is the perimeter of quadrilateral ABCD?-example-1
User Rmeertens
by
6.1k points

1 Answer

1 vote

Answer:

Using distance(D) formula for two points is given by:


D = √((x_1-x_2)^2+(y_1-y_2)^2)

From the given figure:

The coordinates of the quadrilateral ABCD are:

A(-3, 2), B(4, 2), C(3, -3) and D(-3, -3)

For A(-3, 2) and B(4, 2)

using formula we have;


AB= √((-3-4)^2+(2-2)^2)


AB= √((-7)^2+(0)^2)


AB= √(49) =7 units

Similarly;

For B(4, 2) and C(3, -3)


BC= √((4-3)^2+(2-(-3))^2)


BC= √((1)^2+(5)^2)


BC= √(1+25)=√(26) units.

For C(3, -3) and D(-3, -3)


CD= √((3-(-3))^2+(-3-(-3))^2)


CD= √((6)^2+(0)^2)


CD= √(36+0)=√(36)=6 units.

For A(-3, 2) and D(-3, -3)


AD= √((-3-(-3))^2+(2-(-3))^2)


AD= √(0+25)=√(25)=5 units.

Perimeter is equal to the sum of all the sides of quadrilateral ABCD:

Perimeter = AB+BC+CD+AD

then;


\text{Perimeter} = 7+√(26)+6+5 = 18+√(26) units

Therefore, the perimeter of quadrilateral ABCD is,
18+√(26) units

User Bmunk
by
5.9k points