109k views
1 vote
Use the given information to write an equation of a line that contains a slope of 4 and passes through (-2, -6). Write your answer in point-slope form and slope-intercept form.

User Batazor
by
8.5k points

1 Answer

5 votes


(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-6})\qquad \qquad \stackrel{slope}{m}\implies 4 \\\\\\ \begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-6)}=\stackrel{m}{4}(x-\stackrel{x_1}{(-2)})\implies y+6=4(x+2)


y+6=4x+8\implies y=4x+2\impliedby \begin{array}c \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

User Johnnieb
by
8.2k points