77.5k views
2 votes
What is the following product? 3√16x^7 3√12x^9

Please help, Thank you!

User Kazuo
by
5.7k points

2 Answers

4 votes

Answer:

Product of cube root of :


\sqrt[3]{16x^7} * \sqrt[3]{12x^9}

First simplify :
\sqrt[3]{16x^7}

Factor: One of two or more expressions that are multiplied together to get a product

then, we can write it as:


\sqrt[3]{2 \cdot 8 x^7} ,

Rewrite 8 as
2^3 and
x^7 = x^6 \cdot x


\sqrt[3]{2\cdot 2^3 \cdot x^6 \cdot x} or


\sqrt[3]{2\cdot 2^3 \cdot (x^2)^3 \cdot x} [∵
(a^x)^y=a^(xy) ]

or
\sqrt[3]{2^3 \cdot (x^2)^3 \cdot 2\cdot x}

or
2 \cdot x^2\sqrt[3]{2\cdot x} [∵
\sqrt[3]{a^3} =a ]

Similarly, we simplify for
\sqrt[3]{12 x^9}

Then, we can write it as
\sqrt[3]{12\cdot (x^3)^3} or


x^3 \cdot \sqrt[3]{12}

Use :
x^(a+b)=x^a \cdot x^b ,
\sqrt[3]{a} \cdot\sqrt[3]{b} = \sqrt[3]{a \cdot b}

Now,


\sqrt[3]{16x^7} * \sqrt[3]{12x^9} =
2 \cdot x^2\sqrt[3]{2\cdot x} * x^3 \cdot \sqrt[3]{12}

=
2x^2 \cdot x^3 \sqrt[3]{2x} \cdot \sqrt[3]{12}

=
2 x^5\cdot \sqrt[3]{2x \cdot 12} or
2x^5 \cdot \sqrt[3]{24 x}

=
2x^5 \cdot \sqrt[3]{8 \cdot 3x} or
2 x^5 \cdot \sqrt[3]{2^3 \cdot 3 \cdot x}

=
2x^5 \cdot 2 \sqrt[3]{3x} =
4 x^5 \cdot \sqrt[3]{3x}

therefore, the product of
\sqrt[3]{16x^7} * \sqrt[3]{12x^9} is,
4 x^5 \cdot \sqrt[3]{3x}








User Paul Cezanne
by
6.7k points
3 votes


\displaystyle\sqrt[3]{16x^7}*\sqrt[3]{12x^9}=\sqrt[3]{16\cdot 12x^((7+9))}\\\\=\sqrt[3]{4^3\cdot 3x^(16)}=\sqrt[3]{\left(4x^5\right)^3\cdot 3x}\\\\=4x^5\sqrt[3]{3x}

User Patrine
by
5.7k points