94.9k views
4 votes
Given: ΔАВС, m∠ACB = 90°,m∠ACD = 30°,AD = 8 cm. Find: CD, Perimeter ΔABC

Please solve!

User Hasina
by
6.1k points

2 Answers

3 votes

If m ACD = 30 => m DCB = 60.

In triangle ACD:

AC^{2}+CB^{2}=AB^{2} => AB==32.

=> P=16+32+=48 +.

User Stiegi
by
5.1k points
2 votes
If m ACD = 30 => m DCB = 60.
In triangle ACD:

sin 30^(o)=sin (AD)/(AC) =\ \textgreater \ (1)/(2) = (8)/(AC) =\ \textgreater \ AC=16

CD= 8 √(3)

BC= 16√(3)
AC^{2}+CB^{2}=AB^{2} => AB=
√(1024)=32.
=> P=16+32+
16 √(3)=48 +
16 √(3).
Given: ΔАВС, m∠ACB = 90°,m∠ACD = 30°,AD = 8 cm. Find: CD, Perimeter ΔABC Please solve-example-1
User Heyflynn
by
5.8k points