28.1k views
2 votes
If f(x)=5x-6 and g(x)=x^2-4x-8, find (f+g)(x)

a. (f+g)(x)=x^2-x-2
b. (f+g)(x)=6x^2-4x-14
c. (f+g)(x)=x^2+x-14
d. (f+g)(x)=x^2-9x-2

User MarcSB
by
8.8k points

2 Answers

4 votes
(f+g)(x)= f(x) + g(x) = 5x-6 + x^2-4x-8 = x^2+x-14
User HAO CHEN
by
8.0k points
7 votes

Answer:

Option c -
(f+g)(x)=x^2+x-14

Explanation:

Given :
f(x)=5x-6 and
g(x)=x^2-4x-8

To find : The value of
(f+g)(x)?

Solution :

Step 1 - Write the expression in form,


(f+g)(x)=f(x)+g(x)

Step 2 - Substitute the value of f(x) and g(x),


(f+g)(x)=5x-6+x^2-4x-8

Step 3 - Solve by adding like terms,


(f+g)(x)=x^2+x-14

Therefore, The value of the expression is
(f+g)(x)=x^2+x-14

So, Option 'c' is correct.

User M Abbas
by
8.1k points