123k views
1 vote
.

Simplify the expression.

(−5a5b5)2(a3b3)5


25a15b15


25a25b25





−25a25b25

User Zapoo
by
7.7k points

1 Answer

3 votes
The correct answer is: [B]: " 25 a²⁵ b²⁵ " .
_________________________________________________________
Step-by-step explanation:
_________________________________________________________
Given the expression:
_________________________________________________________
" (−5a⁵b⁵)² (a³b³)⁵ " ; Simplify.
_________________________________________________________
Let us being by examining:
______________________________________
→ "(−5a⁵b⁵)² " .

→ "(−5a⁵b⁵)² = (-5)² * (a⁵)² * (b⁵)² = (-5)(-5) * a⁽⁵ˣ²⁾ * b⁽⁵ˣ²⁾ = 25a⁽¹⁰⁾b⁽¹⁰⁾ ;

{Note the following properties of exponents:
(xy)ⁿ = xⁿ * yⁿ ;

(xᵃ)ᵇ = x⁽ᵃ * ᵇ) ;

(xᵃ) * (xᵇ) = x⁽ᵃ ⁺ ᵇ⁾ .}.
______________________________________

Then, we examine:
______________________________________
→ "(a³b³)⁵ " .

→ "(a³b³)⁵ = a⁽³ˣ⁵⁾b⁽³ˣ⁵⁾ = a⁽¹⁵⁾b⁽¹⁵⁾ .
______________________________________

So: " (−5a⁵b⁵)² (a³b³)⁵ = (-5)a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ " ;
________________________________________
Now, we simplify:

→ " 25a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ " ;

→ " 25a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ ;

= 25a⁽¹⁰⁾ a⁽¹⁵⁾b⁽¹⁰⁾ b⁽¹⁵⁾ ;

= 25a⁽¹⁰ ⁺¹⁵⁾ b⁽¹⁰⁺¹⁵⁾ ;

= 25a⁽²⁵⁾ b⁽²⁵⁾ ;
_______________________________________________
→ which is: Answer choice: [B]: " 25 a²⁵ b²⁵ " .
______________________________________________
User Residuum
by
8.3k points