Answer:
domain is the set of all real values for x (-∞,∞)
Explanation:
and
![g(x) = 2x - 3](https://img.qammunity.org/2019/formulas/mathematics/high-school/nsf5a6phpejzlwsa1zz4pvsast7ywgm025.png)
We need to find the domain of
![(f \cdot g)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ezs0ehqtbaoyknnb0kszv92gm4fsfn2gnr.png)
![(f \cdot g)=f(x) \cdot g(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ve5i6sg61v975iinw1pz867s5x0wg5udyw.png)
Plug in f(x) and g(x)
![(f \cdot g)=(x^2 -1)(2x-3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/8zqs7w81d4oys187di066v3w6nf6xogf42.png)
Multiply it using FOIL method
![(x^2 -1)(2x-3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/5ecfgl2zurdbx5xl3vkpynmve8zow42lvf.png)
![f(x) \cdot g(x)=(2x^3-3x^2-2x+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k3hqplhnn0ewhu8x564zmp7jc0xccd8p7q.png)
WE got an cubic equation, there is no restriction for x.
So domain is the set of all real values for x (-∞,∞)