213k views
3 votes
Which function transforms the graph of y=x^2 so that it is first shifted down 4 units and is then reflected across the y-axis?

1 Answer

4 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)= A( Bx+ C)+ D \\\\ ~~~~y= A( Bx+ C)+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \\\\ f(x)= A sin\left( B x+ C \right)+ D \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if } B\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)

with that template in mind, let's check,

down 4 units, D = -4

flipped over the y-axis, B = -1


\bf y=x^2\implies y=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{+0})^2\stackrel{D}{+0}\qquad \qquad \stackrel{shifted}{y=\stackrel{A}{1}(\stackrel{B}{-1}x\stackrel{C}{+0})^2\stackrel{D}{-4}} \\\\\\ y=-x^2-4
User ChristDist
by
7.8k points