232k views
5 votes
If h(x)=(f o g)(x) and h(x)= 4sqrt x+7, find g(x) if f(x)= 4sqrt x+1

1 Answer

1 vote

Answer:
g(x)= x+6

Explanation:

Given functions are:
f(x)= 4√(x+1) and
h(x)= 4√(x+7)

So,
(f\circ g)(x)=f[g(x)]= 4√(g(x)+1) (Replacing
x as
g(x) in the given
f(x) expression
)

Given that,
h(x)=(f\circ g)(x) . So, we will get.........


4√(x+7)= 4√(g(x)+1)\\ \\ √(x+7)= √(g(x)+1)\\ \\ x+7=g(x)+1\\ \\ g(x)=x+7-1 = x+6

Thus, the answer will be:
g(x)= x+6

User Bill Pfeiffer
by
6.0k points