Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/h3h81fknzks3m5lkzvmdwrmpof8mpsbacs.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4vxfmyw10n4l4wwrpxg933y8li6m3ah7k6.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ijuuby0owovgvvmkyt63pxr8cpkn8j9mgp.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Rule [Product Rule]:
![\displaystyle y' = (d)/(dx)[6x]e^\big{5x} + 6x(d)/(dx)[e^\big{5x}]](https://img.qammunity.org/2019/formulas/mathematics/college/d2eqm83mrjpwn0eirz7xfnbycgko7wfppa.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y' = 6(d)/(dx)[x]e^\big{5x} + 6x(d)/(dx)[e^\big{5x}]](https://img.qammunity.org/2019/formulas/mathematics/college/yez5z9rfaxsjtqqg0w17ytrg2hptr1kla3.png)
- Basic Power Rule:
![\displaystyle y' = 6e^\big{5x} + 6x(d)/(dx)[e^\big{5x}]](https://img.qammunity.org/2019/formulas/mathematics/college/8ch87wyylfjrv5hf8jefvan5g3s8eayqf1.png)
- Exponential Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = 6e^\big{5x} + 6xe^\big{5x}(d)/(dx)[5x]](https://img.qammunity.org/2019/formulas/mathematics/college/oznujyowwssyt24vx97bczteobidpz6vng.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y' = 6e^\big{5x} + 30xe^\big{5x}(d)/(dx)[x]](https://img.qammunity.org/2019/formulas/mathematics/college/1ii0nyk3uo0x8zs4f6no6n58vrg7h88yff.png)
- Basic Power Rule:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation