30.0k views
1 vote
Derivatives (6x)(e^5x)

User Medina
by
7.8k points

1 Answer

7 votes

Answer:


\displaystyle (dy)/(dx) = 6e^\big{5x}(5x + 1)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = 6xe^\big{5x}

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:
    \displaystyle y' = (d)/(dx)[6x]e^\big{5x} + 6x(d)/(dx)[e^\big{5x}]
  2. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle y' = 6(d)/(dx)[x]e^\big{5x} + 6x(d)/(dx)[e^\big{5x}]
  3. Basic Power Rule:
    \displaystyle y' = 6e^\big{5x} + 6x(d)/(dx)[e^\big{5x}]
  4. Exponential Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle y' = 6e^\big{5x} + 6xe^\big{5x}(d)/(dx)[5x]
  5. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle y' = 6e^\big{5x} + 30xe^\big{5x}(d)/(dx)[x]
  6. Basic Power Rule:
    \displaystyle y' = 6e^\big{5x} + 30xe^\big{5x}
  7. Factor:
    \displaystyle y' = 6e^\big{5x}(5x + 1)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Jamesrom
by
7.9k points

No related questions found