155k views
1 vote
Determine if the columns of the a span r2. a = 6 −12 −2 4

1 Answer

4 votes
If


\mathbf A=\begin{bmatrix}6&-12\\-2&4\end{bmatrix}

then notice that the columns satisfy


\begin{bmatrix}6\\-2\end{bmatrix}=-\frac12\begin{bmatrix}-12\\4\end{bmatrix}\implies\begin{bmatrix}6\\-2\end{bmatrix}+\frac12\begin{bmatrix}-12\\4\end{bmatrix}=\mathbf 0

which means the columns are linearly dependent and thus only span a subspace of
\mathbb R^2.

Whether you actually meant to write


\mathbf A=\begin{bmatrix}6&-2\\-12&4\end{bmatrix}

would not alter the answer - the columns do not span
\mathbb R^2 - but this time


\begin{bmatrix}6\\-12\end{bmatrix}=-\frac13\begin{bmatrix}-2\\4\end{bmatrix}
User Eric Goodwin
by
6.2k points