53.7k views
5 votes
The third term of a sequence is 120. The fifth term is 76.8. Write an explicit rule representing this geometric sequence.

User Qianqian
by
8.5k points

2 Answers

3 votes
The nth term of the geometric sequence is:
an=ar^(n-1)
where
a=first term
r=common ratio
n=nth term
from the question:
120=ar(3-1)
120=ar^2
a=120/(r^2)....i
also:
76.8=ar^(5-1)
76.8=ar^4
a=76.8/r^4.....i
thus from i and ii
120/r^2=76.8/r^4
from above we can have:
120=76.8/r²
120r²=76.8
r²=76.8/120
r²=0.64
r=âš0.64
r=0.8
hence: a=120/(0.64)=187.5 therefore the formula for the series will be: an=187.5r^0.8
User Ljgww
by
8.5k points
1 vote
The nth term of the geometric sequence is:
an=ar^(n-1)
where
a=first term
r=common ratio
n=nth term
from the question:
120=ar(3-1)
120=ar^2
a=120/(r^2)....i
also:
76.8=ar^(5-1)
76.8=ar^4
a=76.8/r^4.....i
thus from i and ii
120/r^2=76.8/r^4
from above we can have:
120=76.8/r²
120r²=76.8
r²=76.8/120
r²=0.64
r=√0.64
r=0.8
hence:
a=120/(0.64)=187.5
therefore the formula for the series will be:
an=187.5r^0.8
User John Bowers
by
7.3k points