68.0k views
2 votes
Please help with this calculus problem

Please help with this calculus problem-example-1

1 Answer

6 votes

Answer:


\displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = 0

General Formulas and Concepts:

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to c) x = c

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_(x \to c) (f(x))/(g(x)) = \lim_(x \to c) (f'(x))/(g'(x))

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define

Identify


\displaystyle \lim_(x \to 0) (1 - \cos x)/(x)

Step 2: Find

  1. Special Limit Rule [L'Hopital's Rule]:
    \displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = \lim_(x \to 0) ((1 - \cos x)')/((x)')
  2. Rewrite [Derivative Rule - Addition/Subtraction]:
    \displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = \lim_(x \to 0) ((1)' - (\cos x)')/((x)')
  3. Basic Power Rule:
    \displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = \lim_(x \to 0) (0 - (\cos x)')/(1)
  4. Simplify:
    \displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = \lim_(x \to 0) -(\cos x)'
  5. Trigonometric Differentiation:
    \displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = \lim_(x \to 0) \sin x
  6. Evaluate Limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 0) (1 - \cos x)/(x) = 0

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Advanced Limit Techniques

User Starwave
by
8.2k points