108k views
0 votes
A 500.-kilogram roller coaster starts from rest at the top of an 80.0-meter hill. What is its speed at the bottom of this hill?

2 Answers

1 vote
its speed at the bottom of this hill
A 500.-kilogram roller coaster starts from rest at the top of an 80.0-meter hill. What-example-1
User Nameless
by
8.9k points
0 votes

Answer: v = 39.6m/s

Explanation: Ignoring friction and all those things, we have that:

At the top of the hill, the roller coaster only has potential energy, and this potential energy is:

U = m*g*h where m is the mass, g is the gravity acceleration, and h is the height.

Now, when the roller coaster reaches the bottom of the hill, the potential energy is fully converted into kinetic energy, which can be written as:

K = (m/2)*v^2

Then we must solve the equation:

U = K

m*g*h = (m/2)*v^2

v^2 = g*h*2

v = √(2*g*h)

where g = 9.8m/s^2 and h = 80m

so v = (√(2*9.8*90))m/s = 39.6m/s

you can see that the mass of the roller coaster has not an impact on the velocity.

User NicoWheat
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.