186k views
2 votes
16) Express the complex number in trigonometric form.

-3i

A) 3(cos 180° + i sin 180°)
B) 3(cos 270° + i sin 270°)
C) 3(cos 90° + i sin 90°)
D) 3(cos 0° + i sin 0°)

User Mburm
by
6.2k points

1 Answer

3 votes

\bf -3i\implies 0-3i\implies \stackrel{a}{0}~~~~\stackrel{b}{-3}~i\quad \begin{cases} r=√(a^2+b^2)\\\\ \theta =tan^(-1)\left( (b)/(a) \right) \end{cases} \\\\\\ r=√(0^2+(-3)^2)\implies r=√(9)\implies r=3

now, as far as the angle θ, if we plug those values, we'd get an undefined, it just so happen that tan⁻¹ is not defined on that range, however, let's just use the provided coordinates, check the picture below.

therefore
\bf z=r[cos(\theta )+i~sin(\theta )]\implies z=3[cos(270^o)+i~sin(270^o)]
16) Express the complex number in trigonometric form. -3i A) 3(cos 180° + i sin 180°) B-example-1
User Rilent
by
5.8k points