Using the cosine rule
a² = b² + c² -2 bc cos (/)
Simplifying the equation in terms of cos (/),
cos (/)= (b² + c² - a²)/(2bc)
If cos(/) > 0
(b² + c² - a²)/(2bc) > 0 -----------------(b² + c² - a²) > 0
the resulting inequality should be
(b² + c² ) > a²
The answer is the letter C. b^2 + c^2 > a^2