173k views
4 votes
Could someone please help with these three problems? They are simplifying expressions by factoring. Thank you so much!

Could someone please help with these three problems? They are simplifying expressions-example-1
User SeaBiscuit
by
7.3k points

1 Answer

4 votes
6)


\bf \cfrac{2x^2-13x+15}{x^2-2x}\cdot \cfrac{x^2-4x+4}{10-7x+x^2}\implies \cfrac{(2x-3)(x-5)}{x\underline{(x-2)}}\cdot \cfrac{(x-2)\underline{(x-2)}}{x^2-7x+10} \\\\\\ \cfrac{(2x-3)\underline{(x-5)}}{x}\cdot \cfrac{\underline{(x-2)}}{\underline{(x-2)}~\underline{(x-5)}}\implies \cfrac{(2x-3)}{x}\cdot \cfrac{1}{1}\implies \cfrac{2x-3}{x}

7)


\bf \textit{difference of squares} \\\\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -------------------------------


\bf \cfrac{4x^2-9y^2}{6x^2-9xy}\cdot \cfrac{6y^2}{4xy+6y^2}\implies \cfrac{2^2x^2-3^2y^2}{3x(2x-3y)}\cdot \cfrac{6y^2}{2y(2x+3y)} \\\\\\ \cfrac{(2x)^2~-~(3y)^2}{\underline{3} x(2x-3y)}\cdot \cfrac{\underline{2}\cdot \underline{3} y\underline{y}}{\underline{2y}(2x+3y)}\implies \cfrac{\underline{(2x-3y)}~\underline{(2x+3y)}}{x\underline{(2x-3y)}}\cdot \cfrac{y}{\underline{2x+3y}} \\\\\\ \cfrac{1}{x}\cdot \cfrac{y}{1}\implies \cfrac{y}{x}

11)


\bf \cfrac{2x-3}{5x+1}/\cfrac{6x^2-13x+6}{15x^2-7x-2}\implies \cfrac{2x-3}{5x+1}/\cfrac{(2x-3)\underline{(3x-2)}}{\underline{(3x-2)}~(5x+1)} \\\\\\ \cfrac{2x-3}{5x+1}/\cfrac{2x-3}{5x+1}\implies \cfrac{\underline{2x-3}}{\underline{5x+1}}\cdot\cfrac{\underline{5x+1}}{\underline{2x-3}}\implies \cfrac{1}{1}\cdot \cfrac{1}{1}\implies 1
User Jennifer S
by
8.6k points