168k views
2 votes
What is the approximate value of log6(25)?

2 Answers

1 vote
Using the equivalence:

log_b(x)=log_e(x)/log_e(b)

(use base 10 or any other base if more convenient)

log_6(25)=log_e(25)/log_e(6)
=3.218876.../1.791759...
=1.796489... (approximately)
User SOF User
by
5.5k points
4 votes

Answer:


log_(6)(25)=1.796

Explanation:

We have to find the value of
log_(6)(25)


log_(6)(25)=(log_(10)25)/(log_(10)6)

[Since
log_(b)a=(log_(10)a)/(log_(10)b)]


log_(6)(25)=(1.39794)/(0.77818)


log_(6)(25)=1.796

Therefore,
log_(6)(25)=1.796 will be the answer.

User Mwfearnley
by
5.8k points