24,828 views
11 votes
11 votes
I am stuck on this.

Let
y=e^-x+ln(x^2+1)

Find
dy/dx
Find
d^2y/dx^2

User Shramee
by
2.5k points

1 Answer

6 votes
6 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \displaystyle \: \tt \rightarrow \: (dy)/(dx) = - {e}^( - x) + \frac{2x}{ {x}^(2) + 1}

and


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = {e}^(-1) - \frac{ 2{x}^(2) - 2 }{x {}^(4) + 2 {x}^(2) + 1{}^{} }

____________________________________


\large \tt Solution \: :


\qquad \tt \rightarrow \: y = {e}^( - x) + ln( {x}^(2) + 1)


\qquad \displaystyle \: \tt \rightarrow \: (dy)/(dx) = (d)/(dx) ( {e}^( - x) ) + (d)/(dx) (ln( {x}^(2) + 1))


\qquad \displaystyle \: \tt \rightarrow \: (dy)/(dx) = {e}^( - x) \sdot( - 1) + \frac{1}{ {x}^(2) + 1} \sdot(2x)


\qquad \displaystyle \: \tt \rightarrow \: (dy)/(dx) = - {e}^( - x) + \frac{2x}{ {x}^(2) + 1}

Second derivative :


\qquad \displaystyle \: \tt \rightarrow \: (d)/(dx) \bigg( (dy)/(dx) \bigg) = (d)/(dx) \bigg (- {e}^( - x) + \frac{2x}{ {x}^(2) + 1} \bigg)


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = - (d)/(dx) ( {e}^(-1) ) + (d)/(dx) \bigg( \frac{2x}{ {x}^(2) + 1} \bigg )


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = - {e}^(-1) \sdot( - 1) + \frac{( {x}^(2) + 1) \sdot (d)/(dx)(2x) - 2x \sdot (d)/(dx)( {x}^(2) + 1) }{(x {}^(2) + 1) {}^(2) }

[ by division rule ]


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = {e}^(-1) + \frac{( {x}^(2) + 1) \sdot (2)- 2x \sdot (2x) }{(x {}^(4) + 1 + 2 {x}^(2) ) {}^{} }


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = {e}^(-1) + \frac{2{x}^(2) + 2- 4 {x}^(2) }{(x {}^(4) + 1 + 2 {x}^(2) ) {}^{} }


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = {e}^(-1) + \frac{ - 2{x}^(2) + 2 }{x {}^(4) + 2 {x}^(2) + 1{}^{} }


\qquad \displaystyle \: \tt \rightarrow \: \frac{d {}^(2) {y}^{} }{dx {}^(2) } = {e}^(-1) - \frac{ 2{x}^(2) - 2 }{x {}^(4) + 2 {x}^(2) + 1{}^{} }

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Coltoneakins
by
3.2k points