Answer:
1. 20% - add 2 lbs of water to get 2.5 lbs of syrup
2. 25% - add 1.5 lbs of water to get 2 lbs of syrup
3. 1.5% - add 32.833 lbs of water to get 33.333 lbs of syrup
Explanation:
Ella has 0.5 lbs of sugar. Let x lbs be the amount of water Ella should add to get the syrup.
1. 20% syrup:
0.5 lbs - 20%
x+0.5 lbs - 100%
Write a proportion:
![(0.5)/(x+0.5)=(20)/(100)\\ \\0.5\cdot 100=(x+0.5)\cdot 20\\ \\50=20x+10\\ \\20x=50-10\\ \\20x=40\\ \\x=2\ lbs](https://img.qammunity.org/2019/formulas/mathematics/high-school/uc8ymtr6qoveh76bdjxauhyqh3ill3il16.png)
To get 20% syrup Ella should add 2 lbs of water. The total weight of strup is 2.5 lbs.
2. 25% syrup:
0.5 lbs - 25%
x+0.5 lbs - 100%
Write a proportion:
![(0.5)/(x+0.5)=(25)/(100)\\ \\0.5\cdot 100=(x+0.5)\cdot 25\\ \\50=25x+12.5\\ \\25x=50-12.5\\ \\25x=37.5\\ \\x=1.5\ lbs](https://img.qammunity.org/2019/formulas/mathematics/high-school/a4opimaa9ox8q3os5tpusw4nmv08i4b1oo.png)
To get 25% syrup Ella should add 1.5 lbs of water. The total weight of strup is 2 lbs.
3. 1.5% syrup:
0.5 lbs - 1.5%
x+0.5 lbs - 100%
Write a proportion:
![(0.5)/(x+0.5)=(1.5)/(100)\\ \\0.5\cdot 100=(x+0.5)\cdot 1.5\\ \\50=1.5x+0.75\\ \\1.5x=50-0.75\\ \\1.5x=49.25\\ \\x=(49.25)/(1.5)\approx 32.833\ lbs](https://img.qammunity.org/2019/formulas/mathematics/high-school/4r7r8363tmominqh8e9dvddqr6b379pna8.png)
To get 1.5% syrup Ella should add 32.833 lbs of water. The total weight of strup is 33.333 lbs.