140k views
4 votes
Simplify
(4x^-2y^3 ÷ xy^-4)^-2

2 Answers

4 votes

\bf ~~~~~~~~~~~~\textit{negative exponents}\\\\ a^(-n) \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^(-n) \qquad \qquad a^n\implies \cfrac{1}{a^(-n)}\\\\ -------------------------------\\\\


\bf (4x^(-2)y^3 / xy^(-4))^(-2)\implies \left( \cfrac{4x^(-2)y^3}{xy^(-4)} \right)^(-2)\implies \left( \cfrac{xy^(-4)}{4x^(-2)y^3} \right)^(2) \\\\\\ \textit{then we distribute the exponent}\left( \cfrac{x^2y^(-4\cdot 2)}{4^2x^(-2\cdot 2)y^(3\cdot 2)} \right)\implies \cfrac{x^2y^(-8)}{16x^(-4)y^6} \\\\\\ \cfrac{x^2\cdot x^4}{16y^6\cdot y^8}\implies \cfrac{x^(2+4)}{16y^(6+8)}\implies \cfrac{x^6}{16y^(14)}
User CharithJ
by
7.9k points
5 votes
(4x−2y^3xy−4)−2
=x6y^8/16y^6

=x^6y^2/16

Hope this helps:)
User Dmitry Rotay
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories