146k views
5 votes
In quadratic drag problem, the deceleration is proportional to the square of velocity

1 Answer

2 votes
Part A

Given that
a= (dv)/(dt) =-kv^2

Then,


\int dv= -kv^2\int dt \\ \\ \Rightarrow v(t)=-kv^2t+c

For
v(0)=v_0, then


v(0)=-kv^2(0)+c=v_0 \\ \\ \Rightarrow c=v_0

Thus,
v(t)=-kv(t)^2t+v_0

For
v(t)= (1)/(2) v_0, we have


(1)/(2) v_0=-k\left( (1)/(2) v_0\right)^2t+v_0 \\ \\ \Rightarrow (1)/(4) kv_0^2t=v_0- (1)/(2) v_0= (1)/(2) v_0 \\ \\ \Rightarrow kv_0t=2 \\ \\ \Rightarrow t= (2)/(kv_0)


Part B

Recall that from part A,


v(t)= (dx)/(dt) =-kv^2t+v_0 \\ \\ \Rightarrow dx=-kv^2tdt+v_0dt \\ \\ \Rightarrow\int dx=-kv^2\int tdt+v_0\int dt+a \\ \\ \Rightarrow x=- (1)/(2) kv^2t^2+v_0t+a

Now, at initial position, t = 0 and
v=v_0, thus we have


x=a

and when the velocity drops to half its value,
v= (1)/(2) v_0 and
t= (2)/(kv_0)

Thus,


x=- (1)/(2) k\left( (1)/(2) v_0\right)^2\left( (2)/(kv_0) \right)^2+v_0\left( (2)/(kv_0) \right)+a \\ \\ =- (1)/(2k) + (2)/(k) +a

Thus, the distance the particle moved from its initial position to when its velocity drops to half its initial value is given by


- (1)/(2k) + (2)/(k) +a-a \\ \\ = (2)/(k) - (1)/(2k) = (3)/(2k)
User Adam Pery
by
9.1k points