82.2k views
1 vote
What is the standard form of the linear function that passes

through the points (4, 1) and (2, -2)?

User Sho Gondo
by
4.6k points

1 Answer

2 votes

standard form for a linear equation means

• all coefficients must be integers, no fractions

• only the constant on the right-hand-side

• all variables on the left-hand-side, sorted

• "x" must not have a negative coefficient


(\stackrel{x_1}{4}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-2}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-2}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{2}-\underset{x_1}{4}}}\implies \cfrac{-3}{-2}\implies \cfrac{3}{2} \\\\\\ \begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{\cfrac{3}{2}}(x-\stackrel{x_1}{4})


\stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2(y-1)=2\left( \cfrac{3}{2}(x-4) \right)}\implies 2y-2 = 3(x-4)\implies 2y-2=3x-12 \\\\\\ -3x+2y-2=-12\implies -3x+2y=-10\implies \stackrel{* -1\textit{ to both sides}}{3x-2y=10}

User Budthapa
by
2.9k points