105k views
2 votes
20 POINTS!!!


(2)/( √(3)cos(x)+sin(x)) =sec (( \pi )/(6) -x)

Can you help me with this @exordiumx?

2 Answers

5 votes


(2)/(\sqrt3\cos x+\sin x)=\sec\left((\pi)/(6)-x\right)\\\\(2)/(\sqrt3\cos x+\sin x)=(1)/(\cos\left((\pi)/(6)-x\right))\ \ \ \ \ (*)\\----------------\\\\\cos\left((\pi)/(6)-x\right)\ \ \ \ |\text{use}\ \cos(x-y)=\cos x\cos y+\sin x\sin y\\\\=\cos(\pi)/(6)\cos x+\sin(\pi)/(6)\sin x=(\sqrt3)/(2)\cos x+(1)/(2)\sin x=(\sqrt3\cos x+\sin x)/(2)\\------------------------------


(*)\\R_s=\sec\left((\pi)/(6)-x\right)=(1)/(\cos\left((\pi)/(6)-x\right))=(1)/((\sqrt3\cos x+\sin x)/(2))\\\\=(2)/(\sqrt3\cos x+\sin x)=L_s

User Guilherme Teubl
by
7.9k points
0 votes


\ \ (2)/(√(3) \cos (x) + \sin(x)) = \sec\left((\pi)/(6) - x\right)

Right-hand side


\text{RHS} = \sec\left((\pi)/(6) - x\right)

Since
\sec x = (1)/(\cos x), it follows that


\sec\left((\pi)/(6) - x\right) = (1)/(\cos\left((\pi)/(6) - x\right) )

So we can rewrite


\begin{aligned} \text{RHS} &= \sec\left((\pi)/(6) - x\right) \\ &= (1)/(\cos\left((\pi)/(6) - x\right)) \end{aligned}

We have a cosine difference identity for the denominator:


\begin{aligned} \cos(A-B) &= \cos A \cos B + \sin A \sin B \\ \cos\left(\tfrac{\pi}{6} - x\right) &= \cos\left(\tfrac{\pi}{6}\right) \cos (x) + \sin\left(\tfrac{\pi}{6}\right)\sin(x) \end{aligned}

Since
\sin\left(\tfrac{\pi}{6}\right) = 1/2 and
\cos\left(\tfrac{\pi}{6}\right) = √(3)/2, we have


\begin{aligned}\cos\left(\tfrac{\pi}{6} - x\right) &= \cos\left(\tfrac{\pi}{6}\right) \cos (x) + \sin\left(\tfrac{\pi}{6}\right)\sin(x) \\ &= \tfrac{√(3)}{2}\cos (x) + \tfrac{1}{2}\sin(x) \end{aligned}

Using this in the right-hand side


\begin{aligned} \text{RHS} &= (1)/(\cos\left((\pi)/(6) + x\right)) \\ &= \frac{1}{\tfrac{√(3)}{2}\cos (x) + \tfrac{1}{2}\sin(x)} \end{aligned}

Notice how we have tiny denominators of 2.If we multiply the numerator and denominator of the entire fraction, we will deal with those twos, as 2 will distribute and cancel.


\begin{aligned} \text{RHS} &= \frac{1}{\tfrac{√(3)}{2}\cos (x) + \tfrac{1}{2}\sin(x)} \\ &=\frac{2 \cdot(1)}{2 \cdot \left(\tfrac{√(3)}{2}\cos (x) + \tfrac{1}{2}\sin(x)\right)} \\ &= (2)/(√(3) \cos (x) + \sin(x)) \\ &= \text{LHS} \end{aligned}

User DDM
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories