176k views
1 vote
Please help me with precalculus??
linear and angular speed

Please help me with precalculus?? linear and angular speed-example-1

1 Answer

3 votes
13)

there are 2π radians in 1 revolution, and there are 60 seconds in 1 minute, so keeping that in mind, then,


\bf \cfrac{4\underline{\pi} }{5~\underline{s}}\cdot \cfrac{rev}{2\underline{\pi} }\cdot \cfrac{60~\underline{s}}{min}\implies \cfrac{4\cdot 60~rev}{5\cdot 2~min}\implies \cfrac{240~rev}{10~min}\implies 24(rev)/(min)

14)


\bf \textit{linear velocity}\\\\ v=rw\quad \begin{cases} r=radius\\ w=angular~speed\\ ----------\\ v=32(m)/(sec)\\ w=100(rev)/(min) \end{cases}\\\\ -------------------------------\\\\ \textit{let's convert \underline{w} to }(radians)/(sec)


\bf \cfrac{100~\underline{rev}}{\underline{min}}\cdot \cfrac{2\pi }{\underline{rev}}\cdot \cfrac{\underline{min}}{60~sec}\implies \cfrac{100\cdot 2\pi }{60~sec}\implies \cfrac{10\pi }{3~sec}\implies \cfrac{10\pi }{3}(radians)/(sec)\\\\ -------------------------------\\\\ v=rw\implies \cfrac{v}{w}=r\implies \cfrac{(30~m)/(sec)}{(10\pi )/(3~sec)}\implies r=\cfrac{30~m}{\underline{sec}}\cdot \cfrac{3~\underline{sec}}{10\pi } \\\\\\ r=\cfrac{90}{10\pi }m

15)

what is the radians per seconds "w" in revolutions per minute? just another conversion like in 13)


\bf \cfrac{\underline{\pi} }{3~\underline{sec}}\cdot \cfrac{rev}{2\underline{\pi }}\cdot \cfrac{60~\underline{sec}}{min}\implies \cfrac{60 ~rev}{3\cdot 2 ~min}\implies \cfrac{60 ~rev}{6 ~min}\implies 10(rev)/(min)
User Tiani
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories