ANSWER
![- 13= 3( - 1) - 10](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ap0dc4nd3q5ujlehyd82dpk0285vo23ykg.png)
![- 13 = - 2( - 1) - 15](https://img.qammunity.org/2019/formulas/mathematics/middle-school/uw5z04d40vnfgf4yjq2p6k0y6avn24297g.png)
Step-by-step explanation
The given system is
![y = 3x - 10](https://img.qammunity.org/2019/formulas/mathematics/middle-school/re4fzmsy1q21hv4pa54928dm5w6pepk74k.png)
and
![y = - 2x - 15](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1hez2dw9aerpo7bw8blbdzsy6nrvrx2p6r.png)
The solution to the system is
![(-1,-13)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/zn0h03ymz0d4d10a1ehkxh0oowq6r3j78v.png)
This implies that,
![x = - 1 \: and \: y = - 13](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gxrwdmrpmx2h7zgawsapce7cvyoxd1anic.png)
To justify this solution means we substitute,
![x = - 1 \: and \: y = - 13](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gxrwdmrpmx2h7zgawsapce7cvyoxd1anic.png)
into the given system.
When substitute into the first equation we get
![- 13= 3( - 1) - 10](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ap0dc4nd3q5ujlehyd82dpk0285vo23ykg.png)
When we substitute into the second equation, we obtain,
![- 13 = - 2( - 1) - 15](https://img.qammunity.org/2019/formulas/mathematics/middle-school/uw5z04d40vnfgf4yjq2p6k0y6avn24297g.png)
The correct answer is B.