Answer:
sin A = 0.6666666667 ≈ 0.67
cos A = 0.7407407407 ≈ 0.74
Explanation:
The triangle above is a right angle triangle . Angle C is the angle 90°. we can use the cosine law for triangle to solve for side c.
c² = a² + b² - 2ab.cos(C)
a = 9
b = 10
C = 90°
c² = 9² + 10² - 2 × 9 × 10 cos( 90)
c² = 81 + 100 - 180 × 0
c² = 181
c = √181
c = 13.45362405 ≈ 13.5
Using sine rule
a/sin A = b/sin B = c/sin C
a = 9
b = 10
c = 13.5
C = 90°
9/sin A = 13.5/sin 90°
13.5 sin A = 9 × sin 90°
13.5 sin A = 9
sin A = 9/13.5
sin A = 0.6666666667
Use SOHCAHTOA principle to find cos A
cos A = b/c
cos A = 10/13.5
cos A = 0.7407407407