89.8k views
4 votes
Find the fourth roots of 16(cos 200° + i sin 200°).

User Sushrut
by
7.7k points

2 Answers

2 votes



y=2(cos(50=90n)=isin(50+90n))
take n=0 ,y=2(cos(50)+isin(50))

take n=1,y=2(cos(140)+ isin (140))

take n=2,y=2(cos(230)+ isin (230))

take n=3,y=2(cos(320)+isin(320))

User Dejan Toteff
by
8.0k points
3 votes

Answer:

The fourth roots of 16(cos 200° + i sin 200°) are
2(\cos 50^(\circ)+i\sin 50^(\circ)), 2(\cos 140^(\circ)+i\sin 140^(\circ)),2(\cos 230^(\circ)+i\sin 230^(\circ)), 2(\cos 320^(\circ)+i\sin 320^(\circ)).

Explanation:

The given expression is


z=16(\cos 200^(\circ)+i\sin 200^(\circ))

Using deMoivre's Theorem


(\cos \theta+i\sin \theta)^n=\cos n\theta+i\sin n\theta


(z)^{(1)/(4)}=[16(\cos 200^(\circ)+i\sin 200^(\circ))]^{(1)/(4)}


(z)^{(1)/(4)}=2(\cos (200* (1)/(4))^(\circ)+i\sin (200* (1)/(4))^(\circ))


(z)^{(1)/(4)}=2(\cos 50^(\circ)+i\sin 50^(\circ))

The four roots are in the form of


(z)^{(1)/(4)}=2(\cos (50+90n)^(\circ)+i\sin (50+90n)^(\circ))

For n=1,


(z)^{(1)/(4)}=2(\cos 140^(\circ)+i\sin 140^(\circ))

For n=2,


(z)^{(1)/(4)}=2(\cos 230^(\circ)+i\sin 230^(\circ))

For n=3,


(z)^{(1)/(4)}=2(\cos 320^(\circ)+i\sin 320^(\circ))

Therefore the fourth roots of 16(cos 200° + i sin 200°) are
2(\cos 50^(\circ)+i\sin 50^(\circ)), 2(\cos 140^(\circ)+i\sin 140^(\circ)),2(\cos 230^(\circ)+i\sin 230^(\circ)), 2(\cos 320^(\circ)+i\sin 320^(\circ)).

User M Swapnil
by
8.0k points