70.6k views
0 votes
Type the correct answer for each.

The point (x,√7/3) in the second quadrant corresponds to angle 0 on the unit circle.

________ 0=3√7
________ 0=-√ 7/2

1 Answer

4 votes
If point
\left(x,\ (√(7))/(3)\right) is on the unit ircle, then:


x^2+\left( ( √(7) )/(3) \right)^2=1 \\ \\ \Rightarrow x^2+ (7)/(9) =1 \\ \\ \Rightarrow x^2=1- (7)/(9) = (2)/(9) \\ \\ \Rightarrow x= \sqrt{ (2)/(9) } = ( √(2) )/(3)

Since, the point is in the second quadrant, x is negative.

Thus,
(x,\ y)=\left(x,\ (√(7))/(3)\right)=\left(-( √(2) )/(3),\ (√(7))/(3)\right)

Part A:


3 √(7) =6\left( ( √(7) )/(2) \right) \\ \\ =6\left( ( √(7) )/(3) \cdot (3)/( √(2) ) \right) \\ \\ =6\left( ( ( √(7) )/(3) )/( ( √(2) )/(3) ) \right)=-6\left( ( ( √(7) )/(3) )/( -( √(2) )/(3) ) \right) \\ \\ =-6\left( (y)/(x) \right)=-6\tan\theta

Therefore,
-6\tan\theta=3√(7).



Part B:


- ( √(7) )/(2) =- ( √(7) )/(3) \cdot (3)/( √(2) ) \\ \\ =- ( ( √(7) )/(3) )/( ( √(2) )/(3) ) = ( ( √(7) )/(3) )/( -( √(2) )/(3) ) = (y)/(x) \\ \\ =\tan\theta

Therefore,
\tan\theta=- ( √(7) )/(2)
User Anand Kumar M
by
8.3k points

Related questions

asked Mar 22, 2024 197k views
Tintumon M asked Mar 22, 2024
by Tintumon M
8.5k points
1 answer
1 vote
197k views
asked Jan 12, 2017 88.7k views
Davidsr asked Jan 12, 2017
by Davidsr
8.4k points
2 answers
3 votes
88.7k views