44.5k views
3 votes
Given a triangle with vertices P(-9,7), Q(-3,7), and R(-3,1), and S is the midpoint of PQ and T is the midpoint of QR, what is the length of ST?

1 Answer

3 votes
check the picture below.

so we know S is the midpoint of PQ, and T is the midpoint of QR, thus


\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &P&(~ -9 &,& 7~) % (c,d) &Q&(~ -3 &,& 7~) \end{array}\quad % coordinates of midpoint \left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right) \\\\\\ S=\left( \cfrac{-3-9}{2}~,~\cfrac{7+7}{2} \right)\implies S=(-6,7)\\\\ -------------------------------


\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &Q&(~ -3 &,& 7~) % (c,d) &R&(~ -3 &,& 1~) \end{array} \\\\\\ T=\left(\cfrac{-3-3}{2}~,~\cfrac{1+7}{2} \right)\implies T=(-3,4)

so, what's the distance from S to T?


\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &S&(~ -6 &,& 7~) % (c,d) &T&(~ -3 &,& 4~) \end{array}\\\\\\ % distance value d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ ST=√([-3-(-6)]^2+[4-7]^2)\implies ST=√((-3+6)^2+(4-7)^2) \\\\\\ ST=√(3^2+(-3)^2)\implies ST=√(18)\implies ST=√(9\cdot 2) \\\\\\ ST=√(3^2\cdot 2)\implies ST=3√(2)
Given a triangle with vertices P(-9,7), Q(-3,7), and R(-3,1), and S is the midpoint-example-1
User Jrdmcgr
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories