131k views
3 votes
Find the following measures for this figure.

Lateral Area = 55 square units 5√(47) square units 5√(146) square units
Volume = 275 cubic units 91 2/3 cubic units 36 2/3 cubic units

Find the following measures for this figure. Lateral Area = 55 square units 5√(47) square-example-1

1 Answer

4 votes

1. We can find lateral area of a cone by
\text{Lateral area}=\pi*r*l, where r equals radius of cone and l equals slant height of cone.

We can find slant height of our cone using Pythagorean theorem.


l=\sqrt{11^(2)+5^(2)}


l=√(121+25)


l=√(146)

Let us substitute our slant height in lateral area formula.


\text{Lateral area}=\pi*5√(146)

Therefore, our lateral area will be
\pi*5√(146) square units.

2.
\text{Volume of cone}=(1)/(3) \cdot\pi\cdot r^(2)\cdot h

Upon substituting our given values in volume formula we will get,


\text{Volume of cone}=(1)/(3) \cdot\pi\cdot 5^(2)\cdot 11


\text{Volume of cone}=(1)/(3) \cdot\pi \cdot 25\cdot 11


\text{Volume of cone}=(275)/(3) \cdot\pi


\text{Volume of cone}=91(2)/(3) \cdot\pi

Therefore, volume of our cone will be
91(2)/(3) \cdot\pi cubic units.



User NothingMore
by
6.7k points