Answer with explanation:
⇒Vertices of Δ PQR = P(2, 4), Q(3, 8) and R(5, 4)
Area of Δ PQR
![=(1)/(2) * \left[\begin{array}{ccc}2&4&1\\3&8&1\\5&4&1\end{array}\right] \\\\=(1)/(2) *[ 2*(8-4)-4 * (3-5)+1 * (12-40)]\\\\=(1)/(2) * [8+8-28]\\\\=(1)/(2) *|16-28|\\\\=(1)/(2) * 12\\\\=6 \text{square units}](https://img.qammunity.org/2019/formulas/mathematics/high-school/eltjeq54m688t59sktshs3q733tind7ied.png)
⇒Vertices of Δ ABC A(2, 4), B(5.5, 18), and C(12.5, 4).
Area of Δ ABC
![=(1)/(2) * \left[\begin{array}{ccc}2&4&1\\5.5&18&1\\12.5&4&1\end{array}\right] \\\\=(1)/(2) *[ 2*(18-4)-4* (5.5-12.5)+1 * (22-225)]\\\\=(1)/(2) * [28+28-203]\\\\=(1)/(2) *|56-203|\\\\=(1)/(2) * 147\\\\=73.50\text{square units}](https://img.qammunity.org/2019/formulas/mathematics/high-school/9rhi3odgu18fmpy3qgwr5v48c1unbdx5l0.png)
⇒Scale Factor or Dilation in this transformation
= is Area of Image Divided by Area of Preimage
![=\frac{\text{Area of} \Delta ABC}{\text{Area of} \Delta PQR}\\\\=(73.50)/(6)\\\\=12.25](https://img.qammunity.org/2019/formulas/mathematics/high-school/cccp0pbzbyu8dj0ct6kr6g1c09yggnkdms.png)