--First we have to simplfy
![(2x-8)/(x^2-x-12) -(x-3)/(x(x+1))](https://img.qammunity.org/2019/formulas/mathematics/high-school/bszoh50mqo62lcnkxqp6xncjitpkhw2s0s.png)
![(2(x-4))/((x-4)(x+3)) - (x-3)/(x(x+1))](https://img.qammunity.org/2019/formulas/mathematics/high-school/fggzbj62l53mizq3ku3rl6tz8f1iptghrz.png)
--Cancel common factors
![(2)/((x+3)) -(x-3)/(x(x+1))](https://img.qammunity.org/2019/formulas/mathematics/high-school/dipqabbyr57o3c7rbzmmp97yj3byclj7mm.png)
--Here remember never cancel factors in a subtraction or addition problem
--Now Multiply each side until both denominators are equal to each other
![(2[x(x+1)])/(x(x+3)(x+1)) -((x-3)(x+3))/(x(x+3)(x+1))](https://img.qammunity.org/2019/formulas/mathematics/high-school/uu5usbpbrnveeir5n9co6iorgkrhexin80.png)
--Simplify
![(2x^2+2x)/(x(x+1)(x+3)) - (x^2-9)/(x(x+1)(x+3))](https://img.qammunity.org/2019/formulas/mathematics/high-school/h39kgjv6boarmht1rmgyil7ct7a6k0452m.png)
--Now that the denominators are the same: subtract!
![(2x^2+2x-(x^2-9))/(x(x+1)(x+3))](https://img.qammunity.org/2019/formulas/mathematics/high-school/jk91ipz8586n6qpi3nsh17xbbsaktd99bp.png)
![(2x^2-x^2+2x+9)/(x(x+1)(x+3))](https://img.qammunity.org/2019/formulas/mathematics/high-school/qu76prcjmqqyvuphraw0x6sra2modsuub3.png)
--And LAST STEP! ......Simplify More.... To get your answer
![(x^2+2x+9)/(x(x+1)(x+3))](https://img.qammunity.org/2019/formulas/mathematics/high-school/shoomfi4izoestbp01xn93bisikb6evlr5.png)