28.1k views
1 vote
I need help with part c). Given that tan(pi/8)= sqrt(2)-1. Please provide a detailed answer.

I need help with part c). Given that tan(pi/8)= sqrt(2)-1. Please provide a detailed-example-1
User Sunyata
by
8.2k points

1 Answer

3 votes


b)\\\tan x=(\sin x)/(c\os x)\\\\\tan^2x=(\sin^2x)/(\cos^2x)=(2\sin^2x)/(2\cos^2x)=(\sin^2x+\sin^2x)/(\cos^2x+\cos^2x)\\\\=(\sin^2x+\sin^2x+\cos^2x-\cos^2x)/(\cos^2x+\cos^2x+\sin^2x-\sin^2x)=((\sin^2x+\cos^2x)-(\cos^2x-\sin^2x))/((\cos^2x+\sin^2x)+(\cos^2x-\sin^2x))\\\\=(1-\cos2x)/(1+\cos2x)\\\\\text{Used}:\\\\\sin^2x+\cos^2x=1\\\\\cos^2x-\sin^2x=\cos2x


\tan^2\left((7\pi)/(8)\right)=(1-\cos\left(2\cdot(7\pi)/(8)\right))/(1+\cos\left(2\cdot(7\pi)/(8)\right))=(1-\cos\left((7\pi)/(4)\right))/(1+\cos\left((7\pi)/(4)\right))=(*)\\\\\cos\left((7\pi)/(4)\right)=\cos\left(2\pi-(\pi)/(4)\right)=\cos\left(-(\pi)/(4)\right)=\cos\left((\pi)/(4)\right)=(\sqrt2)/(2)\\\\(*)=(1-(\sqrt2)/(2))/(1+(\sqrt2)/(2))=\left((2)/(2)-(\sqrt2)/(2)\right):\left((2)/(2)+(\sqrt2)/(2)\right)


=(2-\sqrt2)/(2)/(2+\sqrt2)/(2)=(2-\sqrt2)/(2)\cdot(2)/(2+\sqrt2)=(2-\sqrt2)/(2+\sqrt2)\\\\\text{Use}\ (a+b)(a-b)=a^2-b^2\\\\=(2-\sqrt2)/(2+\sqrt2)\cdot(2-\sqrt2)/(2-\sqrt2)=((2-\sqrt2)^2)/(2^2-(\sqrt2)^2)\\\\\text{Use}\ (a-b)^2=a^2-2ab+b^2\\\\=(2^2-2(2)(\sqrt2)+(\sqrt2)^2)/(4-2)=(4-4\sqrt2+2)/(2)=2-2\sqrt2+1\\\\=(\sqrt2)^2-2(\sqrt2)(1)+1^2=1^2-2(1)(\sqrt2)+(\sqrt2)^2\\\\\text{Use}\ (a-b)^2=a^2-2ab+b^2\\\\=(1-\sqrt2)^2\\\\\text{Therefore}:


\tan^2\left((7\pi)/(8)\right)=(1-\sqrt2)^2\to\boxed{\tan\left((7\pi)/(8)\right)=1-\sqrt2}


c)\\\tan\left((\pi)/(8)\right)=\tan\left(\pi-(7\pi)/(8)\right)=\tan\left(-(7\pi)/(8)\right)=-\tan\left((7\pi)/(8)\right)\\\\=-(1-\sqrt2)=\sqrt2-1\\\\y=\sin(2x-1)+a\tan(\pi)/(8)\\\\\text{We know}\ -1\leq\sin(2x-1)\leq1.\\\\y\geq0\ \text{therefore}\ a\tan(\pi)/(8)\geq1\\\\\text{We have to move the graph at least one unit up}\\\\a(\sqrt2-1)\geq1\qquad\text{divide both sides by}\ (\sqrt2-1)>0\\\\a\geq(1)/(\sqrt2-1)\cdot(\sqrt2+1)/(\sqrt2+1)\\\\a\geq(\sqrt2+1)/((\sqrt2)^2-1^2)


a\geq(\sqrt2+1)/(2-1)\\\\a\geq(\sqrt2+1)/(1)\\\\a\geq\sqrt2+1\\\\Answer:\ \boxed{a=\sqrt2+1}

User Gaurav Ram
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories