Answer:
(2i,0) (-2i,0)
(1,0) (-1,0).
Explanation:
The graph below shows that there are only 2 real solutions at x = 1 and x = - 1
Expressed as points, these two are (1,0) and (-1,0). However that is not the complete answer. There are 2 complex points.
y = x^4 + 3x^2 - 4
y = (x^2 - 1)(x^2 + 4)
These two binomials can be equated to 0
- x^2 - 1 = 0
- x^2 = 1
- sqrt(x^2) = sqrt(1)
- x = +/- 1
- Expressed as points (1,0)(-1,0)
================
- x^2 + 4 = 0
- x^2 = - 4
- sqrt(x^2) = sqrt(-4)
- x = +/- 2 i
- Expressed as "points" these two can be written as (2i,0) (-2i,0)