190k views
0 votes
show that thw roots of the equation (x-a)(x_b)=k^2 are always real if a,b and k are real. Please I really need help with this

1 Answer

3 votes

Answer:

see explanation

Explanation:

Check the value of the discriminant

Δ = b² - 4ac

• If b² - 4ac > 0 then roots are real

• If b² - 4ac = 0 roots are real and equal

• If b² - 4ac < 0 then roots are not real

given (x - a)(x - b) = k² ( expand factors )

x² - bx - ax - k² = 0 ( in standard form )

x² + x(- a - b) - k² = 0

with a = 1, b = (- a - b), c = -k²

b² - 4ac = (- a - b)² + 4k²

For a, b, k ∈ R then (- a - b)² ≥ 0 and 4k² ≥ 0

Hence roots of the equation are always real for a, b, k ∈ R


User Mrmryb
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories