227k views
3 votes
Factorize 21x^2 - 16-7x / 3x^2-4 = 5

User Twyx
by
7.6k points

1 Answer

2 votes

Answer:
\bold{(12x - 7 - i√(47))(12x - 7 + i√(47))=0}

Explanation:


(21x^2-7x - 16)/(3x^2-4)=5

cross multiply: 21x² - 7x - 16 = 15x² - 20

set equal to 0: 6x² - 7x + 4 = 0

Use quadratic formula to find the roots:

a=6, b=-7, c=4


x=(-b \pm √(b^2-4ac))/(2a)


=(-(-7) \pm √((-7)^2-4(6)(4)))/(2(6))


=(7 \pm √(49-96))/(12)


=(7 \pm √(-47))/(12)


=(7 \pm i√(47))/(12)


x_1 =(7 + i√(47))/(12) \qquad >>\qquad (12x - 7 - i√(47))= 0


x_2 =(7 - i√(47))/(12) \qquad >>\qquad (12x - 7 + i√(47))= 0



User Rob Worsnop
by
9.0k points