Answer:
Yes, the side lengths of ΔABC forms a Pythagorean triple
Explanation:
Given : A right angled triangle ABC
Side lengths - 3,4 and 5
To Find: . Do the side lengths form a Pythagorean triple?
Solution :
Hypotenuse (longest side) = 5
To check we need to use Pythagoras theorem :
![Hypotenuse^(2) =Perpendicular^(2) +Base^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/brqotwzl9rwpbb90bxaoc1g360fwg5t2n4.png)
![5^(2) =3^(2) +4^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/24htcow3t7miwzngp85mkk2pvvjhi9gc7z.png)
![25 =9 +16](https://img.qammunity.org/2019/formulas/mathematics/high-school/lrnqb6bleyjy1s08lf69siignj2cwcut50.png)
![25 =25](https://img.qammunity.org/2019/formulas/mathematics/high-school/2bmmm614r2dmlxc69p3tabgmk59465pqup.png)
Since Pythagoras theorem is verified . So, the side lengths form the Pythagorean triplet.
Hence the side lengths of ΔABC forms a Pythagorean triple